Integrable Deformations of Self Dual Gravity

نویسنده

  • Carlos Castro
چکیده

A proposal for constructing a universal nonlinear Ŵ∞ algebra is made as the symmetry algebra of a rotational Killing-symmetry reduction of the nonlinear perturbations of Moyal-Integrable deformations of D = 4 Self Dual Gravity (IDSDG). This is attained upon the construction of a nonlinear bracket based on nonlinear gauge theories associated with infinite dimensional Lie algebras. A Quantization and supersymmetrization program can also be carried out. The relevance to the Kadomtsev-Petviashvili hierarchy, 2D dilaton gravity, quantum gravity and black hole physics is discussed in the concluding remarks. PACS : 0465.+e;0240.+m

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Integrable Systems

W algebras arise in the study of various nonlinear integrable systems such as: self-dual gravity, the KP and Toda hierarchies, their quasi-classical (or dispersionless) limit, etc. Twistor theory provides a geometric background for these algebras. Present state of these topics is overviewed. A few ideas on possible deformations of self-dual gravity (including quantum deformations) are presented.

متن کامل

Nonlinear Integrable Systems

W algebras arise in the study of various nonlinear integrable systems such as: self-dual gravity, the KP and Toda hierarchies, their quasi-classical (or dispersionless) limit, etc. Twistor theory provides a geometric background for these algebras. Present state of these topics is overviewed. A few ideas on possible deformations of self-dual gravity (including quantum deformations) are presented...

متن کامل

Multidimensional integrable systems and deformations of Lie algebra homomorphisms

We use deformations of Lie algebra homomorphisms to construct deformations of dispersionless integrable systems arising as symmetry reductions of anti–self–dual Yang–Mills equations with a gauge group Diff(S). email [email protected] email [email protected] email [email protected]

متن کامل

Multidimensional integrable systems from deformations of Lie algebra homomorphisms

We use deformations of Lie algebra homomorphisms to construct deformations of dispersionless integrable systems arising as symmetry reductions of anti–self–dual Yang–Mills equations with a gauge group Diff(S). email [email protected] email [email protected] email [email protected]

متن کامل

Integrability of classical strings dual for noncommutative gauge theories

We derive the gravity duals of noncommutative gauge theories from the YangBaxter sigma model description of the AdS5×S superstring with classical r-matrices. The corresponding classical r-matrices are 1) solutions of the classical Yang-Baxter equation (CYBE), 2) skew-symmetric, 3) nilpotent and 4) abelian. Hence these should be called abelian Jordanian deformations. As a result, the gravity dua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008